login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers k for which A324644(k)/A324198(k) = 2.
5

%I #23 Mar 10 2024 20:01:30

%S 33,51,69,91,99,135,141,145,153,159,187,207,213,217,285,295,303,321,

%T 339,391,411,423,427,435,445,477,507,519,573,637,639,679,681,699,771,

%U 783,799,843,855,861,885,895,901,909,933,951,963,1017,1041,1057,1059,1071,1081,1083,1147,1149,1173,1185,1195,1203,1207

%N Composite numbers k for which A324644(k)/A324198(k) = 2.

%C See comments in A351458.

%C All terms are odd. Of the 63 initial terms of A349169, only term 13923 occurs also in this sequence. The first common term with A332458 is 161257. - _Antti Karttunen_, Mar 10 2024

%H Antti Karttunen, <a href="/A364286/b364286.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/O#opnseqs">Index entries for sequences where odd perfect numbers must occur, if they exist at all</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%t f[x_] := Block[{m, i, n = x, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Select[Select[Range[1350], CompositeQ], GCD[#2, #3]/GCD[#1, #3] == 2 & @@ {#, DivisorSigma[1, #], f[#]} &] (* _Michael De Vlieger_, Mar 10 2024 *)

%o (PARI)

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o isA364286(n) = if(isprime(n), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u))); \\ _Antti Karttunen_, Mar 10 2024

%Y Cf. A000203, A276086, A324198, A324644, A332458, A349169, A351458, A371082 (subsequence).

%Y Subsequence of A082686.

%K nonn

%O 1,1

%A _Antti Karttunen_, Jul 17 2023