Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 22 2023 00:45:11
%S 1,41,311,1655,4905,15705,32855,76375,142714,272714,435096,797976,
%T 1171466,1857466,2734966,4131702,5556472,8210032,10692990,15060990,
%U 19691490,26186770,32635280,44385680,54557555,69497155,85637215,108686815,129222353,164322353
%N a(n) = Sum_{k=1..n} k^3*sigma_2(k), where sigma_2 is A001157.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Faulhaber%27s_formula">Faulhaber's formula</a>.
%F a(n) = Sum_{k=1..n} k^5 * A000537(floor(n/k)).
%F a(n) ~ (zeta(3)/6) * n^6. - _Amiram Eldar_, Oct 20 2023
%t Accumulate[Table[n^3*DivisorSigma[2, n], {n, 1, 30}]] (* _Amiram Eldar_, Oct 20 2023 *)
%o (PARI) f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
%o a(n, s=3, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
%o (Python)
%o def A364269(n): return sum(k*(k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # _Chai Wah Wu_, Oct 20 2023
%o (Python)
%o from math import isqrt
%o def A364269(n): return ((((s:=isqrt(n))*(s+1))**4*(1-s*(s+1<<1))>>2) + sum(((q:=n//k)*(q+1))**2*k**3*(3*k**2+(q*(q+1<<1)-1)) for k in range(1,s+1)))//12 # _Chai Wah Wu_, Oct 21 2023
%Y Cf. A356125, A364268.
%Y Cf. A000537, A001157.
%K nonn,easy
%O 1,2
%A _Seiichi Manyama_, Oct 20 2023