Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 26 2023 15:40:09
%S -1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,4,9,0,228,63,1241,69,7609,2944,
%T 11356,255,28487,30890,42037,24160,104333,19167,132196,25361,1042145,
%U 473564,4512243,153187,258856349,2950249,353554884,104435283,26762321451,2005002052
%N a(n) is the initial transient (converted to base 10), before the periodic part, on the n-th diagonal from the left of rule-30 1-D cellular automaton, when started from a single ON cell, or -1 if there is no transient part.
%C See A363346 for the length of the transients.
%H Paolo Xausa, <a href="/A364241/b364241.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael Brunnbauer, <a href="https://brunni.de/findings30/">Diagonals in elementary cellular automaton 30</a>, 2019 (<a href="/A364241/a364241.pdf">local PDF copy</a>, with author's permission).
%H Eric S. Rowland, <a href="https://wpmedia.wolfram.com/uploads/sites/13/2018/02/16-3-4.pdf">Local Nested Structure in Rule 30</a>, Complex Systems 16 (2006), pp. 239-258.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rule30.html">Rule 30</a>.
%H Stephen Wolfram, <a href="https://www.wolframscience.com/nks/notes-2-1--rule-30/">Notes on chapter 2, Rule 30</a>, from A new kind of science online, Wolfram Media, 2002.
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%e In the following diagram, showing the first 22 evolution steps of the CA, three diagonals are highlighted, along with their transient and periodic parts (the rest of the CA is represented by hyphens, for better visualization).
%e .
%e 3rd diagonal
%e __ Transient = 1
%e - / Repeat = 0
%e --1 a(3) = 1
%e --0--
%e --0---- 12th diagonal
%e --0------ __ Transient = 01
%e --0--------/ Repeat = 0010
%e --0--------0- a(12) = 1
%e --0--------1---
%e --0--------0----- __ 20th diagonal
%e --0--------0-------/ Transient = 01000101
%e --0--------1-------0- Repeat = 1100
%e --0--------0-------1--- a(20) = 69
%e --0--------0-------0-----
%e --0--------0-------0-------
%e --0--------1-------0---------
%e --0--------0-------1-----------
%e --0--------0-------0-------------
%e --0--------0-------1---------------
%e --0--------1-------1-----------------
%e --0--------0-------1-------------------
%e --0--------0-------0---------------------
%e --0--------0-------0-----------------------
%e --0--------1-------1-------------------------
%e .
%t A364241list[nmax_]:=With[{ca=CellularAutomaton[86,{{1},0},{2nmax,{1-nmax,nmax}}]},Map[If[#=={},-1,FromDigits[#,2]]&,Array[First[FindTransientRepeat[Drop[Diagonal[ca,nmax-#],Ceiling[(#-1)/2]],2]]&,nmax]]];A364241list[50]
%Y Cf. A070950.
%Y Cf. A363344 (diagonals), A363345 (periods), A363346 (length of transients), A364240 (periodic part).
%K sign,base
%O 1,14
%A _Paolo Xausa_, Jul 15 2023