login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the first n prime numbers integers.
1

%I #15 Dec 31 2023 12:42:22

%S 1,0,2,0,0,6,0,0,0,24,0,0,0,0,120,0,0,0,0,2,718,0,0,0,0,0,4,5036,0,0,

%T 0,0,0,1,3,40316,0,0,0,0,0,0,0,18,362862,0,0,0,0,0,0,0,0,14,3628786,0,

%U 0,0,0,0,0,0,0,0,99,39916701,0,0,0,0,0,0,0,0,0,5,78,479001517

%N Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the first n prime numbers integers.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>

%e The triangle begins:

%e 1;

%e 0, 2;

%e 0, 0, 6;

%e 0, 0, 0, 24;

%e 0, 0, 0, 0, 120;

%e 0, 0, 0, 0, 2, 718;

%e 0, 0, 0, 0, 0, 4, 5036;

%e ...

%t T[n_,k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]],{i,n!}],k]; Table[T[n,k],{n,8},{k,n}]//Flatten

%o (PARI)

%o MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])}

%o row(n)={my(f=vector(n)); forperm(vector(n,i,prime(i)), v, f[matrank(MkMat(v))]++); f} \\ _Andrew Howroyd_, Dec 31 2023

%Y Cf. A000142 (row sums), A348891 (minimal nonzero absolute value determinant), A350955 (minimal determinant), A350956 (maximal determinant), A351021 (minimal permanent), A351022 (maximal permanent), A364234 (right diagonal).

%K nonn,tabl

%O 1,3

%A _Stefano Spezia_, Jul 14 2023

%E Terms a(46) and beyond from _Andrew Howroyd_, Dec 31 2023