login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of [n] such that the minimal element of each block is also its size.
4

%I #28 Oct 21 2023 01:44:49

%S 1,1,0,1,0,0,3,1,0,0,60,45,53,24,7,12601,15120,33390,55710,66522,

%T 86037,37907754,63130067,202203684,511378789,1421634137,2566309603,

%U 5855352202,2064277450957,4418631559288,18485494082571,61020702809287,232959438927000,783244248553960

%N Number of partitions of [n] such that the minimal element of each block is also its size.

%C The block sizes are distinct as a consequence of the definition.

%C There are A188431(n) different block size configurations for a given n. - _John Tyler Rascoe_, Jul 19 2023

%H Alois P. Heinz, <a href="/A364207/b364207.txt">Table of n, a(n) for n = 0..735</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%e a(0) = 1: () the empty partition.

%e a(1) = 1: 1.

%e a(3) = 1: 1|23.

%e a(6) = 3: 1|24|356, 1|25|346, 1|26|345.

%e a(7) = 1: 1|23|4567.

%e a(10) = 60: 1|25|367|489(10), 1|25|368|479(10), 1|25|369|478(10), ..., 1|28|39(10)|4567, 1|29|38(10)|4567, 1|2(10)|389|4567.

%e a(14) = 7: 1|23|4568|79(10)(11)(12)(13)(14), 1|23|4569|78(10)(11)(12)(13)(14), 1|23|456(10)|789(11)(12)(13)(14), 1|23|456(11)|789(10)(12)(13)(14), 1|23|456(12)|789(10)(11)(13)(14), 1|23|456(13)|789(10)(11)(12)(14), 1|23|456(14)|789(10)(11)(12)(13).

%p b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, 1,

%p b(n, i-1)+`if`(i>n or i>n-i+1, 0, b(n-i, i-1)*binomial(n-i, i-1))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..33); # _Alois P. Heinz_, Jul 22 2023

%t b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1] + If[i > n || i > n-i+1, 0, b[n-i, i-1]*Binomial[n-i, i-1]]]];

%t a[n_] := b[n, n];

%t Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, Oct 20 2023, after _Alois P. Heinz_ *)

%Y Cf. A000110, A007837, A188431, A326493, A327711, A364406.

%K nonn

%O 0,7

%A _Alois P. Heinz_, Jul 13 2023