Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 20 2023 08:04:28
%S 1,10,4,15,3,6,12,9,11,14,2,20,8,26,5,32,21,13,18,16,7,22,25,30,24,28,
%T 31,40,33,23,50,41,95,44,38,17,27,19,34,37,66,42,35,48,39,60,36,45,51,
%U 29,78,47,138,55,64,105,52,57,43,70,58,46,49,75,63,54,72,65,96,81,84,79
%N The sum of the digits present in a(n) and a(n+1) divides the product [a(n)*a(n+1)]. This is the lexicographically earliest sequence of distinct positive terms with this property.
%H Eric Angelini, <a href="http://cinquantesignes.blogspot.com/2023/07/supersums-superproducts.html">SuperSums, SuperProducts</a>, personal blog.
%e digitsum a(1) + digitsum a(2) = 1 + 1 + 0 = 2 and 2 divides 1 * 10 = 10 (result = 5);
%e digitsum a(2) + digitsum a(3) = 1 + 0 + 4 = 5 and 5 divides 10 * 4 = 40 (result = 8);
%e digitsum a(3) + digitsum a(4) = 4 + 1 + 5 = 10 and 10 divides 4 * 15 = 60 (result = 6);
%e digitsum a(4) + digitsum a(5) = 1 + 5 + 3 = 9 and 9 divides 15 * 3 = 45 (result = 5);
%e digitsum a(5) + digitsum a(6) = 3 + 6 = 9 and 9 divides 3 * 6 = 18 (result = 2); etc.
%t a[1]=1; a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]||Mod[a[n-1]*k,Total[Join[IntegerDigits@a[n-1],IntegerDigits@k]]]!=0,k++];k)
%t Array[a,60] (* _Giorgos Kalogeropoulos_, Jul 14 2023 *)
%Y Cf. A007953, A364120, A364187, A364188.
%K base,nonn
%O 1,2
%A _Eric Angelini_, Jul 12 2023