login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364155
Number of tilings of a 4 X n rectangle using dominoes and trominoes (of any shape).
2
1, 1, 17, 145, 1294, 12109, 110017, 1014847, 9329739, 85734771, 788413732, 7247507779, 66631267902, 612575544564, 5631666716170, 51774765284018, 475989775503935, 4376002308955898, 40230688543323077, 369859957740214272, 3400299804915728832, 31260584166252805100
OFFSET
0,3
LINKS
Wikipedia, Tromino
Index entries for linear recurrences with constant coefficients, signature (4, 34, 110, 107, 471, -389, -2708, 3428, -4181, -11740, 3747, -10113, -29419, 70950, 267918, -248892, 432693, -725427, 191447, -1184726, 1684957, -1052686, 1530485, -1038032, 837283, -1626500, 1230186, -380907, 255066, -430738, 319226, -125242, 49641, -8350, 11151, -15891, 2947, 584, 124, -160, 181, -11, -16, -4, 1).
FORMULA
G.f.: -(4*x^48 -15*x^47 -68*x^46 -60*x^45 +713*x^44 -459*x^43 +335*x^42 +2463*x^41 +12370*x^40 -60590*x^39 +28693*x^38 -22202*x^37 +189535*x^36 -450520*x^35 +1150691*x^34 -1400058*x^33 +584615*x^32 -1251182*x^31 +4498492*x^30 -5254375*x^29 +1720938*x^28 -3197095*x^27 +4899768*x^26 -2638295*x^25 +5588004*x^24 -2873134*x^23 -489180*x^22 -2469550*x^21 +842560*x^20 -609116*x^19 +705223*x^18 +618859*x^17 -72209*x^16 -18191*x^15 +30674*x^14 -50598*x^13 -34222*x^12 +10726*x^11 -8865*x^10 -7204*x^9 +3077*x^8 -308*x^7 +266*x^6 +445*x^5 +81*x^4 +67*x^3 +21*x^2 +3*x -1) / (-x^45 +4*x^44 +16*x^43 +11*x^42 -181*x^41 +160*x^40 -124*x^39 -584*x^38 -2947*x^37 +15891*x^36 -11151*x^35 +8350*x^34 -49641*x^33 +125242*x^32 -319226*x^31 +430738*x^30 -255066*x^29 +380907*x^28 -1230186*x^27 +1626500*x^26 -837283*x^25 +1038032*x^24 -1530485*x^23 +1052686*x^22 -1684957*x^21 +1184726*x^20 -191447*x^19 +725427*x^18 -432693*x^17 +248892*x^16 -267918*x^15 -70950*x^14 +29419*x^13 +10113*x^12 -3747*x^11 +11740*x^10 +4181*x^9 -3428*x^8 +2708*x^7 +389*x^6 -471*x^5 -107*x^4 -110*x^3 -34*x^2 -4*x +1).
EXAMPLE
a(2) = 17:
.___. .___. .___. .___. .___. .___. .___. .___. .___.
| | | |___| |___| | | | |___| |___| | | | | ._| |_. |
| | | | | | |___| |_|_| | | | |___| |_|_| |_| | | |_|
|_|_| | | | |___| |___| |_|_| | | | | | | |___| |___|
|___| |_|_| |___| |___| |___| |_|_| |_|_| |___| |___|
.
.___. .___. .___. .___. .___. .___. .___. .___.
|___| |___| | | | | | | |_. | | ._| |_. | | ._|
| ._| |_. | | |_| |_| | | |_| |_| | | |_| |_| |
|_| | | |_| |_| | | |_| | | | | | | |_| | | |_|
|___| |___| |___| |___| |_|_| |_|_| |___| |___| .
CROSSREFS
Column k=4 of A364457.
Sequence in context: A241796 A181908 A233328 * A083294 A196780 A208506
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 28 2023
STATUS
approved