login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose Stolarsky representation (A364121) is palindromic.
1

%I #8 Jul 07 2023 05:41:57

%S 1,2,3,5,6,8,13,15,18,21,23,34,36,40,45,50,55,66,71,89,91,95,108,113,

%T 120,128,136,144,159,176,196,204,233,235,239,261,273,286,291,298,319,

%U 327,338,351,364,377,400,426,464,490,518,550,563,610,612,616,654,667

%N Numbers whose Stolarsky representation (A364121) is palindromic.

%C The positive Fibonacci numbers (A000045) are terms since the Stolarsky representation of Fibonacci(1) = Fibonacci(2) is 0 and the Stolarsky representation of Fibonacci(n) is n-2 1's for n >= 3.

%C Fiboancci(2*n+1) + 2 is a term for n >= 3, since its Stolarsky representation is n-1 0's between two 1's.

%H Amiram Eldar, <a href="/A364122/b364122.txt">Table of n, a(n) for n = 1..10000</a>

%e The first 10 terms are:

%e n a(n) A364121(a(n))

%e -- ---- -------------

%e 1 1 0

%e 2 2 1

%e 3 3 11

%e 4 5 111

%e 5 6 101

%e 6 8 1111

%e 7 13 11111

%e 8 15 1001

%e 9 18 11011

%e 10 21 111111

%t stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];

%t stolPalQ[n_]:= PalindromeQ[stol[n]]; Select[Range[700], stolPalQ]

%o (PARI) stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}

%o is(n) = {my(s = stol(n)); s == Vecrev(s);}

%Y Cf. A000045, A200648, A200649, A200650, A200651, A200714, A364121.

%Y Similar sequences: A002113, A006995, A014190, A094202, A331191, A351712, A351717, A352087, A352105, A352319, A352341.

%K nonn,base

%O 1,2

%A _Amiram Eldar_, Jul 07 2023