Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 07 2023 05:41:43
%S 0,1,11,10,111,101,110,1111,100,1011,1101,1110,11111,1010,1001,10111,
%T 1100,11011,11101,11110,111111,1000,10101,10011,10110,101111,11010,
%U 11001,110111,11100,111011,111101,111110,1111111,10100,10001,101011,10010,100111,101101
%N Stolarsky representation of n.
%H Amiram Eldar, <a href="/A364121/b364121.txt">Table of n, a(n) for n = 1..10000</a>
%H Casey Mongoven, <a href="/A200648/a200648.txt">Description of Stolarsky Representations</a>.
%F Description of an algorithm for calculating a(n):
%F Let s(1) = {} be the empty set, and for n > 1, let s(n) be the sequence of digits of a(n). s(n) can be calculated recursively by:
%F 1. If n = round(round(n/phi)*phi) then s(n) = s(floor(n/phi^2) + 1) U {0}, where phi is the golden ratio (A001622) and U denotes concatenation.
%F 2. If n != round(round(n/phi)*phi) then s(n) = s(round(n/phi)) U {1}.
%F a(n) = A007088(A200714(n)).
%F A268643(a(n)) = A200649(n).
%F A055641(a(n)) = A200650(n).
%F A055642(a(n)) = A200648(n).
%F A043562(a(n)) = A200651(n)
%t stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
%t a[n_] := FromDigits[stol[n]]; Array[a, 100]
%o (PARI) stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
%o a(n) = fromdigits(stol(n));
%Y Cf. A001622, A007064, A200648, A200649, A200650, A200651, A200714.
%Y Cf. A007088, A043562, A055641, A055642, A268643.
%K nonn,base
%O 1,3
%A _Amiram Eldar_, Jul 07 2023