%I #6 Jul 06 2023 21:13:54
%S 1,1,1,1,65,1,1,4161,192,1,1,266305,28545,382,1,1,17043521,3891520,
%T 101125,635,1,1,1090785345,511266561,23105270,261780,951,1,1,
%U 69810262081,66021638592,4901267861,89335610,562296,1330,1,1,4467856773185,8454558363265,997262532182,27503177191,267021146,1066366,1772,1
%N Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*63^(n-d-k), with 0 <= k <= n.
%C T(n, k) is the number of 64-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.
%H Prudence Djagba and Jan Hązła, <a href="https://arxiv.org/abs/2306.16421">Combinatorics of subgroups of Beidleman near-vector spaces</a>, arXiv:2306.16421 [math.RA], 2023. See pp. 7-9.
%e The triangle begins:
%e 1;
%e 1, 1;
%e 1, 65, 1;
%e 1, 4161, 192, 1;
%e 1, 266305, 28545, 382, 1;
%e 1, 17043521, 3891520, 101125, 635, 1;
%e 1, 1090785345, 511266561, 23105270, 261780, 951, 1;
%e ...
%t T[n_,k_]:=Sum[Binomial[n,d]StirlingS2[n-d,k]63^(n-d-k),{d,0,n-k}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten
%Y Cf. A000012 (k=0), A133853 (k=1), A364069 (row sums), A364071, A364073.
%K nonn,tabl
%O 0,5
%A _Stefano Spezia_, Jul 04 2023