login
Heinz numbers of integer partitions with median > 1. Numbers whose multiset of prime factors has median > 2.
1

%I #7 Jul 15 2023 05:42:35

%S 3,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,25,26,27,29,30,31,33,34,

%T 35,36,37,38,39,41,42,43,45,46,47,49,50,51,53,54,55,57,58,59,60,61,62,

%U 63,65,66,67,69,70,71,73,74,75,77,78,79,81,82,83,84,85,86

%N Heinz numbers of integer partitions with median > 1. Numbers whose multiset of prime factors has median > 2.

%C The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

%C The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

%F A360005(a(n)) > 1.

%F A360459(a(n)) > 2.

%e The terms together with their prime indices begin:

%e 3: {2} 23: {9} 42: {1,2,4}

%e 5: {3} 25: {3,3} 43: {14}

%e 6: {1,2} 26: {1,6} 45: {2,2,3}

%e 7: {4} 27: {2,2,2} 46: {1,9}

%e 9: {2,2} 29: {10} 47: {15}

%e 10: {1,3} 30: {1,2,3} 49: {4,4}

%e 11: {5} 31: {11} 50: {1,3,3}

%e 13: {6} 33: {2,5} 51: {2,7}

%e 14: {1,4} 34: {1,7} 53: {16}

%e 15: {2,3} 35: {3,4} 54: {1,2,2,2}

%e 17: {7} 36: {1,1,2,2} 55: {3,5}

%e 18: {1,2,2} 37: {12} 57: {2,8}

%e 19: {8} 38: {1,8} 58: {1,10}

%e 21: {2,4} 39: {2,6} 59: {17}

%e 22: {1,5} 41: {13} 60: {1,1,2,3}

%t prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];

%t Select[Range[100],Median[prifacs[#]]>2&]

%Y For mean instead of median we have A057716, counted by A000065.

%Y These partitions are counted by A238495.

%Y The complement is A364056, counted by A027336, low version A363488.

%Y A000975 counts subsets with integer median, A051293 for mean.

%Y A124943 counts partitions by low median, high version A124944.

%Y A360005 gives twice the median of prime indices, A360459 for prime factors.

%Y A359893 and A359901 count partitions by median.

%Y Cf. A002865, A316413, A325347, A327473, A327476, A363727.

%K nonn

%O 1,1

%A _Gus Wiseman_, Jul 14 2023