%I #7 Jul 08 2023 08:04:36
%S 2,4,8,12,16,20,24,28,32,40,44,48,52,56,64,68,72,76,80,88,92,96,104,
%T 112,116,120,124,128,136,144,148,152,160,164,168,172,176,184,188,192,
%U 200,208,212,224,232,236,240,244,248,256,264,268,272,280,284,288,292
%N Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's.
%C The multiset of prime factors of n is row n of A027746.
%C The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length).
%e The terms together with their prime indices begin:
%e 2: {1} 64: {1,1,1,1,1,1} 136: {1,1,1,7}
%e 4: {1,1} 68: {1,1,7} 144: {1,1,1,1,2,2}
%e 8: {1,1,1} 72: {1,1,1,2,2} 148: {1,1,12}
%e 12: {1,1,2} 76: {1,1,8} 152: {1,1,1,8}
%e 16: {1,1,1,1} 80: {1,1,1,1,3} 160: {1,1,1,1,1,3}
%e 20: {1,1,3} 88: {1,1,1,5} 164: {1,1,13}
%e 24: {1,1,1,2} 92: {1,1,9} 168: {1,1,1,2,4}
%e 28: {1,1,4} 96: {1,1,1,1,1,2} 172: {1,1,14}
%e 32: {1,1,1,1,1} 104: {1,1,1,6} 176: {1,1,1,1,5}
%e 40: {1,1,1,3} 112: {1,1,1,1,4} 184: {1,1,1,9}
%e 44: {1,1,5} 116: {1,1,10} 188: {1,1,15}
%e 48: {1,1,1,1,2} 120: {1,1,1,2,3} 192: {1,1,1,1,1,1,2}
%e 52: {1,1,6} 124: {1,1,11} 200: {1,1,1,3,3}
%e 56: {1,1,1,4} 128: {1,1,1,1,1,1,1} 208: {1,1,1,1,6}
%t prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
%t merr[y_]:=If[Length[y]==0,0,If[OddQ[Length[y]],y[[(Length[y]+1)/2]], y[[1+Length[y]/2]]]];
%t Select[Range[100],merr[prifacs[#]]==2&]
%Y Partitions of this type are counted by A027336.
%Y Median of prime indices is A360005(n)/2.
%Y For mode instead of median we have A360013, low A360015.
%Y The low version is A363488, positions of 1's in A363941.
%Y Positions of 1's in A363942.
%Y A112798 lists prime indices, length A001222, sum A056239.
%Y A123528/A123529 gives mean of prime factors, indices A326567/A326568.
%Y A124943 counts partitions by low median, high A124944.
%Y Cf. A072978, A215366, A316413, A359908, A363727, A363740, A363949.
%K nonn
%O 1,1
%A _Gus Wiseman_, Jul 07 2023