Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jul 20 2023 12:12:33
%S 2,3,7,9,12,14,14,21,26,28,33,36,40,45,36,50,59,61,65,70,75,77,85,89,
%T 94,97,104,107,113,118,84
%N a(n) is the least k such that no number with distinct base-n digits is the product of k (not necessarily distinct) primes.
%C A364049(n) <= a(n) <= 1 + floor(log_2(A062813(n))).
%e a(4) = 7 because 2 = 2^1 = 2_4, 4 = 2^2 = 10_4, 8 = 2^3 = 20_4, 24 = 2^3 * 3 = 120_4, 108 = 2^2 * 3^3 = 1230_4 and 216 = 2^3 * 3^3 = 3120_4 have distinct base-4 digits and are products of 1 to 6 primes respectively, but there is no product of 7 primes that has distinct base-4 digits.
%p f:= proc(n) local d,S,V,k;
%p V:= {};
%p for d from 1 to n do
%p S:= select(t -> t[-1] <> 0, combinat:-permute([$0..n-1],d));
%p S:= map(proc(t) local i; numtheory:-bigomega(add(t[i]*n^(i-1),i=1..d)) end proc, S);
%p V:= V union convert(S,set);
%p od;
%p min({$1..1+max(V)} minus V)
%p end proc:
%p map(f, [$2..10]);
%Y Cf. A001222, A062813, A165712, A364049.
%K nonn,base,hard,more
%O 2,1
%A _Robert Israel_, Jul 04 2023
%E a(11) from _Jon E. Schoenfield_, Jul 05 2023
%E a(12) from _Martin Ehrenstein_, Jul 07 2023
%E a(13)-a(18) from _Jon E. Schoenfield_, Jul 08 2023
%E a(19)-a(22) from _Pontus von Brömssen_, Jul 13 2023
%E a(23)-a(32) from _Bert Dobbelaere_, Jul 20 2023