login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364048
Expansion of Sum_{k>0} x^(5*k) / (1 + x^(6*k)).
0
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, -1, -1, 0, 1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 1, -1, -1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 2, -1, 0, 1, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, -1, 0, 2, 0, 1, -1, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, -1, 1, 1, 1
OFFSET
1,65
FORMULA
G.f.: Sum_{k>0} (-1)^(k-1) * x^(6*k-1) / (1 - x^(6*k-1)).
a(n) = Sum_{d|n, d==5 (mod 6)} (-1)^((d-5)/6).
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^((#-5)/6) &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%6==5)*(-1)^((d-5)/6));
CROSSREFS
Cf. A319995.
Sequence in context: A045706 A045634 A141702 * A353657 A259896 A337086
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 03 2023
STATUS
approved