login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364029
Odd squarefree semiprimes s = p*q such that (p + q)/2 and (p - q)/2 are squarefree.
1
21, 35, 51, 69, 85, 91, 93, 123, 133, 187, 213, 219, 221, 235, 237, 253, 259, 267, 339, 341, 355, 365, 371, 381, 395, 411, 413, 437, 445, 451, 453, 469, 485, 493, 501, 573, 611, 635, 667, 669, 685, 699, 723, 731, 755, 763, 771, 779, 781, 789, 803, 813, 843, 851, 893, 899
OFFSET
1,1
LINKS
MAPLE
filter:= proc(n) local F, p, q;
F:= ifactors(n)[2];
if nops(F) <> 2 or F[1, 2] <> 1 or F[2, 2] <> 1 then return false fi;
p:= F[1, 1]; q:= F[2, 1];
numtheory:-issqrfree((p+q)/2) and numtheory:-issqrfree(abs(p-q)/2)
end proc:
select(filter, [seq(i, i=1..1000, 2)]); # Robert Israel, Dec 12 2023
MATHEMATICA
okQ[n_] := MatchQ[FactorInteger[n], {{p_, 1}, {q_, 1}} /; SquareFreeQ[(p + q)/2] && SquareFreeQ[(q - p)/2]];
Select[Range[1, 1000, 2], okQ] (* Jean-François Alcover, Jun 04 2024 *)
PROG
(PARI) forstep (k = 15, 900, 2, if (omega(k)==2 && bigomega(k)==2, my (F=factorint(k)); if ( issquarefree((F[2, 1]-F[1, 1])/2) && issquarefree((F[2, 1]+F[1, 1])/2), print1(k, ", "))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jul 01 2023
STATUS
approved