Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 05 2023 23:52:13
%S 1,1,1,0,1,1,0,1,1,1,0,1,4,1,1,0,1,26,14,1,1,0,1,236,509,49,1,1,0,1,
%T 2752,35839,10340,175,1,1,0,1,39208,4154652,5941404,222244,637,1,1,0,
%U 1,660032,718142257,7244337796,1081112575,4981531,2353,1,1,0,1,12818912,173201493539
%N Table read by descending antidiagonals. T(n,k) is the big Ramsey degree of k in w^n, where w is the first transfinite ordinal, omega.
%C T(n,k) is the least integer t such that, for all finite colorings of the k-subsets of w^n, there exists some S, an order-equivalent subset to w^n, where that coloring restricted to the k-subsets of S outputs at most t colors.
%C By Ramsey's theorem, the first row T(1,k)=1 for all k.
%C The second row T(2,k) coincides with A000311.
%C The second column T(n,2) coincides with A079309.
%D Dragan Mašulovic and Branislav Šobot, Countable ordinals and big Ramsey degrees, Combinatorica, 41 (2021), 425-446.
%D Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorčević, Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geometric & Functional Analysis, 15 (2005), 106-189.
%H Joanna Boyland, William Gasarch, Nathan Hurtig, and Robert Rust, <a href="https://arxiv.org/abs/2305.07192">Big Ramsey Degrees of Countable Ordinals</a>, arXiv:2305.07192 [math.CO], 2023.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OrdinalNumber.html">Ordinal Number</a>.
%F T(n,k) = Sum_{p=0..n*k} P(p,n,k), where for n >= 2 and k >= 1,
%F P(0,n,k) = 0, and for p >= 1,
%F P(p,n,k) = Sum_{j=1..k} Sum_{0..p-1} binomial(p-1,i)*P(i,n-1,j)*P(p-1-i,n,k-j).
%e The data is organized in a table beginning with row n = 0 and column k = 0. The data is read by descending antidiagonals. T(2,3)=26.
%e The table T(n,k) begins:
%e [n/k] 0 1 2 3 4 5 ...
%e --------------------------------------------------------------------
%e [0] 1, 1, 0, 0, 0, 0, ...
%e [1] 1, 1, 1, 1, 1, 1, ...
%e [2] 1, 1, 4, 26, 236, 2572, ...
%e [3] 1, 1, 14, 509, 35839, 4154652, ...
%e [4] 1, 1, 49, 10340, ...
%e [5] 1, 1, 175, 222244, ...
%e [6] 1, 1, 637, ...
%o (Haskell)
%o pp p n k
%o | n == 0 && k >= 2 = 0
%o | k == 0 && p == 0 = 1
%o | k == 0 && p >= 1 = 0
%o | n == 0 && k == 1 && p == 0 = 1
%o | n == 0 && k == 1 && p >= 1 = 0
%o | n == 1 && k >= 1 && k == p = 1
%o | n == 1 && k >= 1 && k /= p = 0
%o | n >= 2 && k >= 1 = sum [binom (p-1) i * pp i (n-1) j * pp (p-1-i) n (k-j) | i <- [0..p-1], j <- [1..k]]
%o binom n 0 = 1
%o binom 0 k = 0
%o binom n k = binom (n-1) (k-1) * n `div` k
%o a364026 n k =
%o sum [pp p n k | p <- [0..n*k]]
%Y T(2,k) is A000311. T(n,2) is A079309.
%K nonn,tabl
%O 0,13
%A _Nathan Hurtig_, Jul 01 2023