login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363941
Low median in the multiset of prime indices of n.
18
0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 2, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 2, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 2, 14, 1, 2, 1, 15, 1, 4, 3, 2, 1, 16, 2, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 2, 19, 1, 2, 3, 20, 1, 21, 1, 3, 1, 4, 2, 22, 1, 2, 1
OFFSET
1,3
COMMENTS
The low median (see A124943) in a multiset is either the middle part (for odd length), or the least of the two middle parts (for even length).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The prime indices of 90 are {1,2,2,3}, with low median 2, so a(90) = 2.
The prime indices of 150 are {1,2,3,3}, with low median 2, so a(150) = 2.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
mell[y_]:=If[Length[y]==0, 0, If[OddQ[Length[y]], y[[(Length[y]+1)/2]], y[[Length[y]/2]]]];
Table[mell[prix[n]], {n, 30}]
CROSSREFS
Positions of first appearances are 1 and A000040.
The triangle for this statistic (low median) is A124943, high A124944.
Median of prime indices is A360005(n)/2.
For mode instead of median we have A363486, high A363487.
Positions of 1's are A363488.
The high version is A363942.
A067538 counts partitions with integer mean, ranked by A316413.
A112798 lists prime indices, length A001222, sum A056239.
A363943 gives low mean of prime indices, triangle A363945.
A363944 gives high mean of prime indices, triangle A363946.
Sequence in context: A260738 A055396 A363486 * A364191 A367583 A302788
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 01 2023
STATUS
approved