login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n, d == 0, 3, or 4 mod 7} d.
3

%I #17 Sep 11 2024 17:23:17

%S 0,0,3,4,0,3,7,4,3,10,11,7,0,21,3,4,17,21,0,14,31,11,0,31,25,0,3,53,0,

%T 13,31,36,14,17,42,25,0,38,42,14,0,87,0,15,48,46,0,31,56,35,20,56,53,

%U 21,11,109,3,0,59,77,0,31,94,36,0,80,67,21,3,136,0,49,73,74,28,42,95,42,0,94,84,0,0

%N a(n) = Sum_{d|n, d == 0, 3, or 4 mod 7} d.

%H Harvey P. Dale, <a href="/A363804/b363804.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: Sum_{k>0, k == 0, 3 or 4 mod 7} k * x^k/(1 - x^k).

%t a[n_] := DivisorSum[n, # &, MemberQ[{0, 3, 4}, Mod[#, 7]] &]; Array[a, 100] (* _Amiram Eldar_, Jun 23 2023 *)

%t sm7[n_]:=Total[Select[Divisors[n],MemberQ[{0,3,4},Mod[#,7]]&]]; Array[sm7,100] (* _Harvey P. Dale_, Sep 11 2024 *)

%o (PARI) my(N=90, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, [1, 0, 0, 1, 1, 0, 0][k%7+1]*k*x^k/(1-x^k))))

%Y Cf. A284363, A284444, A284445, A363803.

%Y Cf. A363801.

%K nonn,easy

%O 1,3

%A _Seiichi Manyama_, Jun 23 2023