login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363791
Starts of runs of 3 consecutive integers that are primitive binary Niven numbers (A363787).
3
4184046, 5234670, 6285294, 7861230, 8123886, 8255214, 8255215, 8320878, 8353710, 8370126, 8379247, 12238830, 12451631, 12572622, 13623246, 13629935, 14515182, 14646510, 14673870, 14673871, 14679342, 15040494, 15335375, 15449071, 15531759, 15708078, 15986543, 16178670
OFFSET
1,1
LINKS
EXAMPLE
4184046 is a term since 4184046, 4184047 and 4184048 are all primitive binary Niven numbers.
MATHEMATICA
binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; primBinNivQ[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]);
seq[kmax_] := Module[{tri = primBinNivQ /@ Range[3], s = {}, k = 4}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 3]]; tri = Join[Rest[tri], {primBinNivQ[k]}]; k++]; s]; seq[10^7]
PROG
(PARI) isbinniv(n) = !(n % hammingweight(n));
isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2));
lista(kmax) = {my(tri = vector(3, i, isprim(i)), k = 4); while(k < kmax, if(vecsum(tri) == 3, print1(k-3, ", ")); tri = concat(vecextract(tri, "^1"), isprim(k)); k++); }
CROSSREFS
Subsequence of A049445, A330931, A330932, A363787 and A363790.
A363792 is a subsequence.
Sequence in context: A251371 A234232 A140968 * A251496 A011572 A022538
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jun 22 2023
STATUS
approved