login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 2^(e-2)*e^Sum_{k=2..oo} log(k)/k!.
1

%I #20 Jun 25 2023 04:24:42

%S 3,0,0,9,1,5,0,7,2,2,7,4,1,4,8,7,9,9,3,5,6,3,0,7,4,7,3,7,4,8,5,3,1,6,

%T 8,0,0,5,1,0,7,2,9,1,6,2,2,5,5,3,8,4,3,5,8,0,6,7,6,6,7,3,3,6,5,0,3,3,

%U 3,8,1,3,5,1,7,4,9,5,0,8,4,8,9,9,4,6,6,0,4,7,7,4,3,0,5,7,8,3,7,7

%N Decimal expansion of 2^(e-2)*e^Sum_{k=2..oo} log(k)/k!.

%H Robert A. Beeler, <a href="https://www.researchgate.net/publication/265324328_A_note_on_the_number_of_ways_to_compute_a_determinant_using_cofactor_expansion">A Note on the number of ways to compute a determinant using cofactor expansion</a>, Bull. Inst. Combin. Appl., 63 (2011), 36-38. [ResearchGate link]

%F Equals 2^(e-2)*e^A306243.

%F Equals 2^(exp(1)-2)*A296301. - _Vaclav Kotesovec_, Jun 22 2023

%e 3.009150722741487993563074737485316800510...

%t 2^(E-2)E^NSum[Log[n]/n!, {n, 2, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100] // RealDigits[#, 10, 100] &//First

%Y Cf. A181044, A296301, A306243.

%K nonn,cons

%O 1,1

%A _Stefano Spezia_, Jun 21 2023