%I #21 Jul 30 2023 19:49:27
%S 1,-2,1,5,-4,1,-15,15,-6,1,52,-60,30,-8,1,-203,260,-150,50,-10,1,877,
%T -1218,780,-300,75,-12,1,-4140,6139,-4263,1820,-525,105,-14,1,21147,
%U -33120,24556,-11368,3640,-840,140,-16,1,-115975,190323,-149040,73668,-25578,6552,-1260,180,-18,1
%N Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.
%C The triangle algorithm, as understood here, is a transformation that maps a sequence of integers (a(n) : n >= 0) to a polynomial sequence. A polynomial sequence is a sequence of polynomials (P(n,x) : n >= 0) with degree(P(n, x)) = n for all n >= 0.
%C The polynomials P(n, x) are recursively defined by P(n, x) = p(n, 0, x), where the initial sequence is p(0, m, x) = a(m), and for n > 0 is given by
%C p(n, m, x) = (m + 1)*p(n - 1, m + 1, x) - (m + 1 - x)*p(n - 1, m, x).
%C Here we identify the polynomial sequence with the infinite lower triangular array of its coefficients, T(n, k) = [x^k] P(n, x). We call the mapping (a(n) : n >= 0) -> (T(n, k) : 0 <= k <= n) the 'triangle algorithm', following the lead of Kawasaki and Ohno.
%C Evaluating P(n, x) at different values of x gives rise to a multitude of other sequences; in particular, the transformation a(n) -> b(n) = P(n, 1) will be called the Akiyama-Tanigawa transform of a.
%C The triangle algorithm was studied by Akiyama and Tanigawa, Chen, Imatomi, Arakawa and Kaneko, Kawasaki and Ohno, and others, at first in connection with the Bernoulli and Poly-Bernoulli numbers.
%C .
%C The paradigmatic examples are:
%C a(n) = 1 -> x^n, the standard base of polynomials, A023531.
%C a(n) = n + 1 -> binomial(n, k), Pascal triangle, A007318.
%C a(n) = n + 1 -> P(n, 1) powers of 2, A000079.
%C a(n) = n + 1 -> P(n, 0) the all 1's sequence A000012.
%C a(n) = 2^n -> [x^k] P(n, x), A154921.
%C a(n) = 2^n -> P(n, 0) Fubini numbers, A000670.
%C a(n) = 2^n -> P(n, 1) ordered set partitions of subsets of [n], A000629.
%C a(n) = 2^n -> P(n,-1) osp. of [n] with even number of blocks, A052841.
%C a(n) = 1 / (n + 1) -> [x^k] B(n, x), Bernoulli polynomials, A196838/A196839.
%C a(n) = 1 / (n + 1) -> B(n, 1), the Bernoulli numbers, A164555/A027642.
%C a(n) = Chen(n) -> skp(n, x), Swiss-Knife polynomials, A153641.
%C a(n) = Chen(n) -> P(n, 0), 2^n*Euler(n, 1/2) = Euler(n), A122045.
%C a(n) = Chen(n) -> P(n, 1), 2^n*Euler(n, 1), A155585.
%C a(n) = (-1)^n/n! -> [x^k] P(n, x) this "Bell" triangle.
%C a(n) = (-1)^n/n! -> (-1)^n*P(n, 1) = Bell(n), A000110.
%C a(n) = (-1)^n/n! -> (-1)^n*P(n,-1) = 2-Bell(n), A005493.
%C a(n) = 1/n! -> (-1)^n*P(n, 1) = complementary Bell(n), A000587.
%C a(n) = 1/n! -> (-1)^n*P(n,-1) = complementary 2-Bell(n), A074051.
%C (For Chen's sequence see A363524.)
%C .
%C The present sequence deals with the case of the Bell numbers. In contrast to Aitken's array A011971 and its variants A123346 and A011972, the Bell numbers do not appear as a column of the triangle but as row sums (times (-1)^n), i.e., as values of the associated polynomials at x = 1. Comparing this with a similar situation with the Bernoulli numbers/polynomials, our triangle could be viewed as a more organic generalization of the Bell numbers. Indeed, the names 'Bell triangle' and 'Bell polynomials' would be justified here; but these are already assigned to other concepts.
%H Peter Luschny, <a href="/A363732/b363732.txt">Table of n, a(n) for row 0..100</a>.
%H Kwang-Wu Chen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/CHEN/AlgBE2.html">Algorithms for Bernoulli numbers and Euler numbers</a>, J. Integer Sequences, 4 (2001), #01.1.6.
%H Masanobu Kaneko, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/KANEKO/AT-kaneko.html">The Akiyama-Tanigawa algorithm for Bernoulli numbers</a>, J. Integer Sequences, 3 (2000), #00.2.9.
%H Naho Kawasaki and Yasuo Ohno, <a href="http://math.colgate.edu/~integers/x39/x39.pdf">The triangle algorithm for Bernoulli polynomials</a>, Integers, vol. 23 (2023). (See figure 4.)
%H D. Merlini, R. Sprugnoli, and M. C. Verri, <a href="http://www.emis.de/journals/INTEGERS/papers/f5/f5.Abstract.html">The Akiyama-Tanigawa Transformation</a>, Integers, 5 (1) (2005) #A05.
%e The triangle T(n, k) starts:
%e [0] 1;
%e [1] -2, 1;
%e [2] 5, -4, 1;
%e [3] -15, 15, -6, 1;
%e [4] 52, -60, 30, -8, 1;
%e [5] -203, 260, -150, 50, -10, 1;
%e [6] 877, -1218, 780, -300, 75, -12, 1;
%e [7] -4140, 6139, -4263, 1820, -525, 105, -14, 1;
%e [8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
%p TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else
%p normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end:
%p seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
%t (* rows[0..n], n[0..oo] *)
%t (* row[n]= *)
%t n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r
%t (* columns[1..n], n[0..oo] *)
%t (* column[n]= *)
%t n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c
%t (* sequence *)
%t s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s
%t (* _Detlef Meya_, Jun 22 2023 *)
%o (SageMath)
%o def a(n): return (-1)^n / factorial(n)
%o @cached_function
%o def p(n, m):
%o R = PolynomialRing(QQ, "x")
%o if n == 0: return R(a(m))
%o return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m))
%o for n in range(10): print(p(n, 0).list())
%Y Cf. A293037 (row sums), A000110 (row sums, unsigned), A005493 (alternating row sums, signed).
%Y Cf. A023531, A007318, A000079, A000012, A154921, A000670, A196838/A196839, A164555/A027642, A153641, A122045, A155585, A011971, A123346, A011972, A056857, A363524 (Chen sequence).
%K sign,tabl
%O 0,2
%A _Peter Luschny_, Jun 18 2023