%I #9 Jun 23 2023 23:29:30
%S 0,0,0,0,0,0,0,1,1,3,3,8,8,17,19,28,39,59,68,106,123,165,220,301,361,
%T 477,605,745,929,1245,1456,1932,2328,2846,3590,4292,5111,6665,8040,
%U 9607,11532,14410,16699,20894,24287,28706,35745,42845,49548,59963,70985
%N Number of integer partitions of n with a different mean, median, and mode, assuming there is a unique mode.
%C The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%C A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
%e The a(7) = 1 through a(13) = 17 partitions:
%e (3211) (4211) (3321) (5311) (4322) (4431) (4432)
%e (4311) (6211) (4421) (5322) (5422)
%e (5211) (322111) (5411) (6411) (5521)
%e (6311) (7311) (6322)
%e (7211) (8211) (6511)
%e (43211) (53211) (7411)
%e (332111) (432111) (8311)
%e (422111) (522111) (9211)
%e (54211)
%e (63211)
%e (333211)
%e (433111)
%e (442111)
%e (532111)
%e (622111)
%e (3322111)
%e (32221111)
%t modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
%t Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&Mean[#]!=Median[#]!=First[modes[#]]&]],{n,0,30}]
%Y The length-4 case appears to be A325695.
%Y For equal instead of unequal we have A363719, ranks A363727.
%Y Allowing multiple modes gives A363720, ranks A363730.
%Y A000041 counts partitions, strict A000009.
%Y A008284 counts partitions by length (or decreasing mean), strict A008289.
%Y A359893 and A359901 count partitions by median, odd-length A359902.
%Y A362608 counts partitions with a unique mode.
%Y Cf. A237984, A240219, A325347, A326567/A326568, A327472, A359894, A359896, A359900, A363723, A363728.
%K nonn
%O 0,10
%A _Gus Wiseman_, Jun 22 2023