OFFSET
1,2
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
Without loss of generality, we may assume there is a unique middle-part (A238478).
Includes all constant partitions.
EXAMPLE
The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16):
1 2 4 6 8 C E G
11 22 33 44 66 77 88
1111 222 2222 444 2222222 4444
111111 3221 3333 3222221 5443
11111111 4332 3322211 6442
5331 4222211 7441
222222 11111111111111 22222222
322221 32222221
422211 33222211
111111111111 42222211
52222111
1^16
MATHEMATICA
modes[ms_]:=Select[Union[ms], Count[ms, #]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]], {n, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 19 2023
STATUS
approved