login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(2*prime(n)+1).
1

%I #17 Jun 20 2023 06:33:27

%S 4,6,10,8,22,18,24,24,46,58,36,40,82,56,72,106,96,80,72,120,84,104,

%T 166,178,96,168,132,168,144,226,128,262,200,180,264,200,144,216,264,

%U 346,358,220,382,252,312,216,276,296,288,288,466,478,264,502,408,480,420,360,288,562

%N a(n) = phi(2*prime(n)+1).

%C 2*prime(n)+1 is prime iff a(n) = 2*prime(n).

%F a(n) = A000010(A072055(n)).

%F a(n) = A037225(A000040(n)).

%t a[n_] := EulerPhi[2*Prime[n] + 1]; Array[a, 100] (* _Amiram Eldar_, Jun 16 2023 *)

%o (PARI) a(n)=eulerphi(2*prime(n)+1)

%Y Cf. A000010, A000040, A008331, A037225, A072055.

%K nonn

%O 1,1

%A _Alain Rocchelli_, Jun 16 2023