login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>0} (1/(1 - k*x^k)^4 - 1).
5

%I #13 Jul 17 2023 00:59:20

%S 4,18,32,91,76,358,148,917,796,2368,408,10354,612,16586,16984,52873,

%T 1208,180408,1616,374934,271408,749070,2692,3350370,178376,4592968,

%U 4349008,13197802,5076,45402484,6108,74470417,64515400,149432876,10324768,652324677,10028

%N Expansion of Sum_{k>0} (1/(1 - k*x^k)^4 - 1).

%F a(n) = Sum_{d|n} (n/d)^d * binomial(d+3,3).

%t a[n_] := DivisorSum[n, (n/#)^# * Binomial[# + 3, 3] &]; Array[a, 40] (* _Amiram Eldar_, Jul 17 2023 *)

%o (PARI) a(n) = sumdiv(n, d, (n/d)^d*binomial(d+3, 3));

%Y Cf. A338662, A362683, A363639.

%Y Cf. A116963, A363648.

%K nonn

%O 1,1

%A _Seiichi Manyama_, Jun 13 2023