login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^4.
7

%I #25 Dec 30 2024 02:16:36

%S 0,0,1,4,10,21,35,60,85,130,165,245,286,399,466,620,680,921,969,1274,

%T 1366,1705,1771,2325,2310,2886,3010,3679,3654,4666,4495,5580,5622,

%U 6664,6590,8285,7770,9405,9426,11210,10660,13230,12341,14953,14740,16951,16215,20181

%N Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^4.

%H Seiichi Manyama, <a href="/A363607/b363607.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>0} binomial(k,3) * x^k/(1 - x^k).

%F a(n) = Sum_{d|n} binomial(d,3).

%F From _Amiram Eldar_, Dec 30 2024: (Start)

%F a(n) = (sigma_3(n) - 3*sigma_2(n) + 2*sigma_1(n)) / 6.

%F Dirichlet g.f.: zeta(s) * (zeta(s-3) - 3*zeta(s-2) + 2*zeta(s-1)) / 6.

%F Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

%t a[n_] := DivisorSum[n, Binomial[#, 3] &]; Array[a, 50] (* _Amiram Eldar_, Jul 25 2023 *)

%o (PARI) my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^k)^4)))

%o (PARI) a(n) = my(f = factor(n)); (sigma(f, 3) - 3*sigma(f, 2) + 2*sigma(f)) / 6; \\ _Amiram Eldar_, Dec 30 2024

%Y Cf. A013662, A069153, A363608.

%Y Cf. A059358, A363604, A363611.

%Y Cf. A000203, A001157, A001158.

%K nonn,easy,changed

%O 1,4

%A _Seiichi Manyama_, Jun 11 2023