Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 07 2023 12:51:04
%S 1,0,1,-3,1,4,-4,-8,1,23,-8,-12,-27,12,36,15,1,16,-149,-20,71,91,166,
%T -24,-119,-186,-285,251,-26,28,761,-32,1,-199,-679,-827,-310,36,970,
%U 1572,1821,40,-2631,-44,331,-5628,1772,-48,-495,3051,2546,6697,-1715,52,2791,-7425,-8007,-10869,-3653,-60
%N Expansion of g.f. A(x) = Sum_{n=-oo..+oo} x^n * (i + x^n)^(2*n), where i^2 = -1.
%C Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds as a formal power series for all y.
%H Paul D. Hanna, <a href="/A363569/b363569.txt">Table of n, a(n) for n = 0..4100</a>
%F The g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas; here, i = (+/-) sqrt(-1).
%F (1) A(x) = Sum_{n=-oo..+oo} x^n * (i + x^n)^(2*n).
%F (2) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + i*x^n)^(2*n).
%F (3) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) * (1 + i*x^n)^(2*n) / (1 + x^(2*n))^(2*n).
%F (4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (i + x^n)^n.
%F (5) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + i*x^n)^n.
%F (6) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) * (1 + i*x^n)^n / (1 + x^(2*n))^n.
%F From _Paul D. Hanna_, Aug 06 2023: (Start)
%F The following generating functions are extensions of _Peter Bala_'s formulas given in A260147.
%F (7) A(x^2) = Sum_{n=-oo..+oo} x^(2*n+1) * (i + x^(2*n+1))^(2*n+1).
%F (8) A(x^2) = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + i*x^(2*n+1))^(2*n+1).
%F (End)
%F a(2^n) = 1 for n > 0 (conjecture).
%F a(p) = p*(-1)^((p-1)/2) - 1 for primes p > 3 (conjecture).
%e G.f.: A(x) = 1 + x^2 - 3*x^3 + x^4 + 4*x^5 - 4*x^6 - 8*x^7 + x^8 + 23*x^9 - 8*x^10 - 12*x^11 - 27*x^12 + 12*x^13 + 36*x^14 + 15*x^15 + ...
%o (PARI) {a(n) = my(A); A = sum(m=-n-1,n+1, x^m * (I + x^m +x*O(x^n))^(2*m) ); polcoeff(A,n)}
%o for(n=0,60,print1(a(n),", "))
%Y Cf. A260147, A363558, A363559.
%K sign
%O 0,4
%A _Paul D. Hanna_, Jul 31 2023