The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A363568 Expansion of l.g.f. A(x) satisfying theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*exp(A(x)) - x^n)^(n-1) where theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2) is a Jacobi theta function. 2

%I #13 Nov 18 2023 07:58:21

%S 2,18,152,1298,11432,102528,931968,8554698,79116722,736053548,

%T 6880854312,64581401504,608178222316,5743797385400,54380418647072,

%U 515969530624186,4904912090029220,46705792266725778,445414424602046360,4253490292103734268,40668438064085218644,389270517755459345232

%N Expansion of l.g.f. A(x) satisfying theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*exp(A(x)) - x^n)^(n-1) where theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2) is a Jacobi theta function.

%C Conjectures:

%C (1) a(n) == 0 (mod 2) for n >= 1,

%C (2) a(n) == 2 (mod 4) iff n is a square or twice a square (A028982) and n > 0.

%H Paul D. Hanna, <a href="/A363568/b363568.txt">Table of n, a(n) for n = 1..400</a>

%F L.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n satisfies the following formulas; here theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2).

%F (1) theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*exp(A(x)) - x^n)^(n-1).

%F (2) theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - 2*exp(A(x))*x^n)^(n+1).

%F (3) 2*exp(A(x))*theta_4(x) = Sum_{n=-oo..+oo} x^(2*n) * (2*exp(A(x)) - x^n)^(n-1).

%F (4) 2*exp(A(x))*theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*exp(A(x))*x^n)^(n+1).

%F a(n) ~ c * d^n / sqrt(n), where d = 9.794524925276737055626907094888557782590433308033607879... and c = 0.289888114090505739891516837512006241321867679200012... - _Vaclav Kotesovec_, Nov 18 2023

%e L.g.f.: A(x) = 2*x + 18*x^2/2 + 152*x^3/3 + 1298*x^4/4 + 11432*x^5/5 + 102528*x^6/6 + 931968*x^7/7 + 8554698*x^8/8 + 79116722*x^9/9 + ...

%e where exponentiation yields the g.f. of A363574, which begins

%e exp(A(x)) = 1 + 2*x + 11*x^2 + 70*x^3 + 485*x^4 + 3586*x^5 + 27702*x^6 + 221044*x^7 + 1807751*x^8 + 15073208*x^9 + ... + A363574(n)*x^n + ...

%e and

%e theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 + 2*x^36 - 2*x^49 + ...

%e SPECIFIC VALUES.

%e A(1/10) = 0.8178924661878061760306420027592911481425...

%e A(-exp(-Pi)) = -0.0728391253128727098719433234114815730792...

%e A(-exp(-2*Pi)) = -0.0037038254492119550196758540871566838036...

%e A(exp(-Pi)) = 0.108968833504579170457547429339378954140155...

%e where related values are

%e theta_4(-exp(-Pi)) = Pi^(1/4)/gamma(3/4),

%e theta_4(exp(-Pi)) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).

%e For example, we have

%e Sum_{n=-oo..+oo} exp(-n*Pi) * (2*exp(A(exp(-Pi))) - exp(-n*Pi))^(n-1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)) = 0.91357913815611682...

%o (PARI) {theta_4(m) = sum(n=-sqrtint(m+1),sqrtint(m+1), (-1)^n * x^(n^2) + x*O(x^m))}

%o {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff(-theta_4(#A) + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); n*polcoeff(log(Ser(A)),n)}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A363574 (exp(A(x))), A002448 (theta_4).

%K nonn

%O 1,1

%A _Paul D. Hanna_, Jun 11 2023

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 23:34 EDT 2024. Contains 373432 sequences. (Running on oeis4.)