Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 02 2023 21:57:23
%S 1,0,1,1,2,4,11,28,87,266,952,3381,13513,53915,237113,1046732,5016728,
%T 24186664,125121009,652084528,3615047527,20211789423,119384499720,
%U 711572380960,4455637803543,28162688795697,186152008588691,1242276416218540,8636436319397292
%N Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements and no block contains both odd and even elements.
%H Alois P. Heinz, <a href="/A363454/b363454.txt">Table of n, a(n) for n = 0..650</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k) * Stirling2(ceiling(n/2),k).
%F a(2n) = A047797(n).
%e a(0) = 1: () the empty partition.
%e a(1) = 0.
%e a(2) = 1: 1|2.
%e a(3) = 1: 13|2.
%e a(4) = 2: 13|24, 1|2|3|4.
%e a(5) = 4: 135|24, 13|2|4|5, 15|2|3|4, 1|2|35|4.
%e a(6) = 11: 135|246, 13|24|5|6, 13|26|4|5, 13|2|46|5, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46, 1|2|3|4|5|6.
%e a(7) = 28: 1357|246, 135|24|6|7, 137|24|5|6, 13|24|57|6, 135|26|4|7, 135|2|46|7, 137|26|4|5, 13|26|4|57, 137|2|46|5, 13|2|46|57, 13|2|4|5|6|7, 157|24|3|6, 15|24|37|6, 17|24|35|6, 1|24|357|6, 157|26|3|4, 15|26|37|4, 157|2|3|46, 15|2|37|46, 15|2|3|4|6|7, 17|26|35|4, 1|26|357|4, 17|2|35|46, 1|2|357|46, 1|2|35|4|6|7, 17|2|3|4|5|6, 1|2|37|4|5|6, 1|2|3|4|57|6.
%p a:= n-> (h-> add(Stirling2(h, k)*Stirling2(n-h, k), k=0..h))(iquo(n, 2)):
%p seq(a(n), n=0..40);
%p # second Maple program:
%p b:= proc(n, x, y) option remember; `if`(abs(x-y)>n, 0,
%p `if`(n=0, 1, `if`(x>0, b(n-1, y, x)*x, 0)+b(n-1, y, x+1)))
%p end:
%p a:= n-> b(n, 0$2):
%p seq(a(n), n=0..40);
%Y Bisection gives A047797 (even part).
%Y Cf. A000110, A124419, A124425, A363451.
%K nonn
%O 0,5
%A _Alois P. Heinz_, Jun 02 2023