login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
4

%I #19 Nov 22 2024 06:48:01

%S 1,1,5,26,141,790,4542,26668,159333,966038,5930678,36801660,230491410,

%T 1455283172,9253674120,59209786992,380961295445,2463303690790,

%U 15998687418030,104325569140156,682768883525830,4483232450501492,29527005540912660,195006621974036808

%N Expansion of g.f. C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%C Compare the g.f. A(x) = C(x*C(x)^3) to the identity C(-x*C(x)^3) = 1/C(x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%C Conjecture: a(n) is odd iff n is a power of 2 or n = 0.

%H Paul D. Hanna, <a href="/A363308/b363308.txt">Table of n, a(n) for n = 0..400</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, C(x) is the g.f. of the Catalan numbers (A000108).

%F (1) A(x) = C(x*C(x)^3), where C(x) = (1 - sqrt(1-4*x))/(2*x).

%F (2) A(x) = B(x/A(x)) where B(x) = A(x*B(x)) = C( x*B(x) * C(x*B(x))^3 ) is the g.f. of A033296.

%F (3) a(n) = Sum_{k=1..n} 3*k* binomial(2*k+1,k) * binomial(2*n+k,n-k) / ((2*k+1)*(2*n+k)) for n > 0, with a(0) = 1.

%F D-finite with recurrence 4*n*(n-1)*(21687905*n +56141583)*(n+1)*a(n) +2*n*(n-1) *(43375810*n^2 -6022811713*n +10976463649)*a(n-1) -(n-1) *(15429963345*n^3 -200018809315*n^2 +658353214412*n -632905646028)*a(n-2) +(102558230760*n^4 -1409936457473*n^3 +6909548744112*n^2 -14414518702669*n +10812683474490)*a(n-3) +(-212869593020*n^4 +3377685007909*n^3 -20069314453381*n^2 +52902205420466*n -52146873039204)*a(n-4) +4*(2*n-11) *(10773532140*n^3 -171459615587*n^2 +902576783797*n -1572525214995)*a(n-5) +4*(n-6) *(208500820*n -955419151)*(2*n-11) *(2*n-13)*a(n-6)=0. - _R. J. Mathar_, Nov 22 2024

%e G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 141*x^4 + 790*x^5 + 4542*x^6 + 26668*x^7 + 159333*x^8 + 966038*x^9 + 5930678*x^10 + ...

%e such that A(x) = C(x*C(x)^3), where

%e C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ... + A000108(n)*x^n + ...

%e x*C(x)^3 = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + ... + A000245(n)*x^n + ...

%e Note that x*C(x)^3 = (C(x) - 1)*(1-x)/x - 1.

%e Also, the g.f. of related sequence A033296 begins

%e B(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + ...

%e where A(x) = B(x/A(x)), B(x) = A(x*B(x)) = C(x*B(x)*C(x*B(x))^3).

%o (PARI) {a(n) = if(n==0,1, sum(k=1,n, 3*k* binomial(2*k+1,k) * binomial(2*n+k,n-k) / ((2*k+1)*(2*n+k)) ) )}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) /* G.f. A(x) = C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 */

%o {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( subst(C, x, x*C^3), n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A127632, A153294, A033296, A000108 (C(x)), A000245 (x*C(x)^3).

%Y Cf. A363309, A363111.

%K nonn

%O 0,3

%A _Paul D. Hanna_, May 28 2023