Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 16 2023 11:04:11
%S 0,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,2,1,2,2,1,1,1,5,1,1,
%T 1,4,1,1,1,3,1,1,1,2,2,1,1,6,2,2,1,2,1,3,1,3,1,1,1,3,1,1,2,7,1,1,1,2,
%U 1,1,1,8,1,1,2,2,1,1,1,6,4,1,1,3,1,1,1
%N Number of integer factorizations of n with a unique mode.
%C An integer factorization of n is a multiset of positive integers > 1 with product n.
%C A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
%C Conjecture: 9 is missing from this sequence.
%e The a(n) factorizations for n = 2, 4, 16, 24, 48, 72:
%e (2) (4) (16) (24) (48) (72)
%e (2*2) (4*4) (2*2*6) (3*4*4) (2*6*6)
%e (2*2*4) (2*2*2*3) (2*2*12) (3*3*8)
%e (2*2*2*2) (2*2*2*6) (2*2*18)
%e (2*2*3*4) (2*2*2*9)
%e (2*2*2*2*3) (2*2*3*6)
%e (2*3*3*4)
%e (2*2*2*3*3)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
%t Table[Length[Select[facs[n],Length[modes[#]]==1&]],{n,100}]
%Y The complement for partitions is A362607, ranks A362605.
%Y The version for partitions is A362608, ranks A356862.
%Y A001055 counts factorizations, strict A045778, ordered A074206.
%Y A089723 counts constant factorizations.
%Y A316439 counts factorizations by length, A008284 partitions.
%Y A339846 counts even-length factorizations, A339890 odd-length.
%Y Cf. A240219, A326622, A333487, A335434, A347438, A362610, A362611, A362612, A362614, A363723.
%K nonn
%O 1,4
%A _Gus Wiseman_, Jun 27 2023