Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 May 20 2023 01:04:35
%S 193,233,241,257,277,281,313,337,349,353,373,389,397,401,409,421,433,
%T 449,457,461,509,521,541,557,569,577,593,601,613,617,641,653,661,673,
%U 677,701,709,733,757,761,769,773,797,809,821,829,853,857,877,881,929,937
%N Primes q == 1 (mod 4) such that there is at least one equivalence class of quaternary quadratic forms of discriminant q not representing 2.
%H Andy Huchala, <a href="/A363147/b363147.txt">Table of n, a(n) for n = 1..20000</a>
%H F. Hirzebruch, <a href="http://www.numdam.org/item/10.24033/asens.1342.pdf">Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe</a>, Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 101-165. See page 135.
%H Jürg Kramer, <a href="http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN00233125X">On the linear independence of certain theta-series</a>, Mathematische Annalen 281.2 (1988): 219-228. See page 226.
%o (Sage)
%o bound = 100
%o P = Primes()
%o p = 2
%o for i in range(bound):
%o p = P.next(p)
%o if p % 4 == 1:
%o K1.<a> = NumberField(x^2 - p)
%o K2.<b> = NumberField(x^2 + p)
%o K3.<c> = NumberField(x^2 + 3*p)
%o zeta = K1.zeta_function()
%o h2 = len(K2.class_group())
%o h3 = len(K3.class_group())
%o H_plus = int(abs(.49+1/2*zeta(-1)+1/8 * h2 + 1/6*h3))
%o H = (H_plus+int((p + 19)/24))/2
%o if H_plus-H>0:
%o print(p)
%Y Cf. A307250, A363148.
%K nonn
%O 1,1
%A _Andy Huchala_, May 18 2023