login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363138
G.f. A(x) satisfies: 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x) - x^n)^n * (1 - x^n*A(x))^n.
2
1, 2, 4, 10, 32, 110, 380, 1452, 5444, 21422, 84348, 339498, 1375168, 5638930, 23273316, 96829410, 405119328, 1704806800, 7207449048, 30607173180, 130475372576, 558195492452, 2395675502344, 10312175675736, 44507875822784, 192575428797954, 835133872734696, 3629372408642778
OFFSET
0,2
COMMENTS
Compare to identity: 0 = Sum_{n=-oo..+oo} x^(2*n) * (y - x^n)^n * (y + x^n)^n, which holds for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x) - x^n)^n * (1 - x^n*A(x))^n.
(2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / ( (A(x) - x^n)^n * (1 - x^n*A(x))^n ).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 32*x^4 + 110*x^5 + 380*x^6 + 1452*x^7 + 5444*x^8 + 21422*x^9 + 84348*x^10 + 339498*x^11 + ...
where A = A(x) satisfies
0 = ... - x^12/((A - x^3)^3*(1 - x^3*A)^3) + x^4/((A - x^2)^2*(1 - x^2*A)^2) - 1/((A - x)*(1 - x*A)) + 1 - x^2*(A - x)*(1 - x*A) + x^4*(A - x^2)^2*(1 - x^2*A)^2 - x^6*(A - x^3)^3*(1 - x^3*A)^3 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = -polcoeff(sum(m=-#A, #A, (-1)^m * x^(2*m) * (Ser(A) - x^m)^m*(1 - x^m*Ser(A))^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A354963.
Sequence in context: A296003 A263662 A151400 * A367113 A365516 A336614
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 12 2023
STATUS
approved