login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x)^4 = Sum_{n=-oo..+oo} (-x)^n * (A(x)^5 + x^(n-1))^(n+1).
5

%I #11 May 27 2023 00:47:45

%S 1,3,23,284,4125,65526,1102403,19305377,348217156,6425056149,

%T 120700893495,2300815588583,44391646154596,865243089927133,

%U 17011581975085968,336981451741477122,6719019528496352690,134742110298875293027,2715909284023948643846,54992586234084937679092

%N Expansion of g.f. A(x) satisfying A(x)^4 = Sum_{n=-oo..+oo} (-x)^n * (A(x)^5 + x^(n-1))^(n+1).

%C Given g.f. G(x,y) of triangle A359670, then A(x) = G(x,y=A(x)^4).

%H Paul D. Hanna, <a href="/A363137/b363137.txt">Table of n, a(n) for n = 0..250</a>

%F G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.

%F (1) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} A359670(n,k) * A(x)^(4*k).

%F (2) A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^5 + x^(n-1))^(n+1).

%F (3) A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (A(x)^5 + x^n)^n.

%F (4) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^5*x^(n+1))^(n-1).

%F (5) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + A(x)^5*x^(n+1))^(n+1).

%F (6) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^5 + x^(n-1))^n ].

%F (7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (A(x)^5 + x^n)^n ].

%F (8) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + A(x)^5*x^(n+1))^n ].

%F (9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x)^5 + x^n)^(n+1).

%F (10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^5*x^n)^n.

%F (11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^5*x^(n+1))^n.

%e G.f.: A(x) = 1 + 3*x + 23*x^2 + 284*x^3 + 4125*x^4 + 65526*x^5 + 1102403*x^6 + 19305377*x^7 + 348217156*x^8 + 6425056149*x^9 + ...

%e where A = A(x) may be generated from triangle A359670 as follows:

%e A(x) = 1 + x*(2 + A^4) + x^2*(4 + 6*A^4 + A^8) + x^3*(8 + 21*A^4 + 12*A^8 + A^12) + x^4*(14 + 62*A^4 + 68*A^8 + 20*A^12 + A^16) + x^5*(24 + 162*A^4 + 284*A^8 + 170*A^12 + 30*A^16 + A^20) + x^6*(40 + 384*A^4 + 998*A^8 + 970*A^12 + 360*A^16 + 42*A^20 + A^24) + x^7*(64 + 855*A^4 + 3092*A^8 + 4410*A^12 + 2720*A^16 + 679*A^20 + 56*A^24 + A^28) + x^8*(100 + 1806*A^4 + 8724*A^8 + 17172*A^12 + 15627*A^16 + 6608*A^20 + 1176*A^24 + 72*A^28 + A^32) + ... + x^n*(Sum_{k=0..n} A359670(n,k) * A(x)^(4*k)) + ...

%e RELATED SERIES.

%e A(x)^2 = 1 + 6*x + 55*x^2 + 706*x^3 + 10483*x^4 + 168866*x^5 + 2868368*x^6 + 50582368*x^7 + 917211505*x^8 + 16994216980*x^9 + ...

%e A(x)^3 = 1 + 9*x + 96*x^2 + 1293*x^3 + 19695*x^4 + 322449*x^5 + 5539013*x^6 + 98484537*x^7 + 1797074331*x^8 + 33461795117*x^9 + ...

%e A(x)^4 = 1 + 12*x + 146*x^2 + 2072*x^3 + 32463*x^4 + 541188*x^5 + 9414694*x^6 + 168962408*x^7 + 3105263987*x^8 + 58149612672*x^9 + ...

%e A(x)^5 = 1 + 15*x + 205*x^2 + 3070*x^3 + 49570*x^4 + 842723*x^5 + 14864320*x^6 + 269521315*x^7 + 4992898830*x^8 + 94091310230*x^9 + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);

%o A[#A] = polcoeff(1 - sum(n=-#A, #A, (-1)^n * x^n * (Ser(A)^5 + x^(n-1))^(n+1) )/Ser(A)^4, #A-1, x) ); A[n+1]}

%o for(n=0, 25, print1( a(n), ", "))

%o (PARI) {a(n) = my(A=1); for(i=1, n,

%o A = 1/sum(m=-#A, #A, (-1)^m * (x*A^5 + x^m + x*O(x^n) )^m ) );

%o polcoeff( A, n, x)}

%o for(n=0, 25, print1( a(n), ", "))

%Y Cf. A361770, A363135, A363136.

%Y Cf. A359670.

%K nonn

%O 0,2

%A _Paul D. Hanna_, May 26 2023