login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying 4 = Sum_{n=-oo..+oo} (-x)^n * (4*A(x) + x^(n-1))^(n+1).
7

%I #12 May 22 2023 08:57:27

%S 1,6,44,348,2886,24800,218888,1972572,18075100,167900506,1577467760,

%T 14963979584,143124912880,1378756186748,13365212659144,

%U 130274948580864,1276075285222662,12554452588117632,124003727286837484,1229203475053859456,12224294019862383720

%N Expansion of g.f. A(x) satisfying 4 = Sum_{n=-oo..+oo} (-x)^n * (4*A(x) + x^(n-1))^(n+1).

%C Conjecture: g.f. A(x) == theta_3(x) (mod 4); a(n) == 2 (mod 4) iff n is a nonzero square and a(n) == 0 (mod 4) iff n is nonsquare.

%H Paul D. Hanna, <a href="/A363104/b363104.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.

%F (1) 4 = Sum_{n=-oo..+oo} (-1)^n * x^n * (4*A(x) + x^(n-1))^(n+1).

%F (2) 4 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (4*A(x) + x^n)^n.

%F (3) 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 4*A(x)*x^(n+1))^(n-1).

%F (4) 4*x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 4*A(x)*x^(n+1))^(n+1).

%F (5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^n * (4*A(x) + x^(n-1))^n ].

%F (6) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (4*A(x) + x^n)^n ].

%F (7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^(n+1))^n ].

%F (8) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (4*A(x) + x^n)^(n+1).

%F (9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 4*A(x)*x^n)^n.

%F (10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 4*A(x)*x^(n+1))^n.

%F a(n) = Sum_{k=0..n} A359670(n,k) * 4^k for n >= 0.

%e G.f.: A(x) = 1 + 6*x + 44*x^2 + 348*x^3 + 2886*x^4 + 24800*x^5 + 218888*x^6 + 1972572*x^7 + 18075100*x^8 + 167900506*x^9 + 1577467760*x^10 + ...

%o (PARI) {a(n) = my(A=1, y=4); for(i=1, n,

%o A = 1/sum(m=-#A, #A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );

%o polcoeff( A, n, x)}

%o for(n=0, 25, print1( a(n), ", "))

%o (PARI) {a(n) = my(A=[1], y=4); for(i=1, n, A = concat(A, 0);

%o A[#A] = polcoeff(-y + sum(n=-#A, #A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y), #A-1, x) ); A[n+1]}

%o for(n=0, 25, print1( a(n), ", "))

%Y Cf. A359670, A359711, A359712, A359713, A363105.

%Y Cf. A363184.

%K nonn

%O 0,2

%A _Paul D. Hanna_, May 21 2023