login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363103
Expansion of g.f. A(x) satisfying 1/3 = Sum_{n=-oo..+oo} x^n * (2*A(x) + (-x)^n)^(3*n-1).
1
1, 18, 990, 76437, 6821604, 662170986, 67898785806, 7236062780346, 793535687872488, 88963928271478008, 10150301461460395149, 1174747280984088520626, 137580020162886643530525, 16274396085743934046292733, 1941610878042595564951651347, 233359133706492695158857170850
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 1/3 = Sum_{n=-oo..+oo} x^n * (2*A(x) + (-x)^n)^(3*n-1).
(2) 1/3 = Sum_{n=-oo..+oo} x^(3*n^2) / (1 + 2*A(x)*(-x)^n)^(3*n+1).
EXAMPLE
G.f.: A(x) = 1 + 18*x + 990*x^2 + 76437*x^3 + 6821604*x^4 + 662170986*x^5 + 67898785806*x^6 + 7236062780346*x^7 + 793535687872488*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(-3/2 + sum(m=-#A, #A, x^m * (2*Ser(A) + (-x)^m)^(3*m-1) )*9/2, #A-1); ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A333089 A129009 A042409 * A073960 A095786 A214181
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 18 2023
STATUS
approved