login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of divisors of 5*n-2 of form 5*k+2.
4

%I #16 Jul 06 2023 07:29:20

%S 0,2,0,2,0,9,0,2,0,14,0,2,7,19,0,2,0,24,0,9,0,41,0,2,0,34,7,2,0,39,17,

%T 2,0,63,0,2,0,49,0,24,7,54,0,2,0,71,0,26,27,64,0,2,0,69,7,2,0,118,0,2,

%U 0,108,0,2,17,84,37,2,7,101,0,2,0,94,0,78,0,99,0,2,0,133,7,24,47,109,0,2,0,153,0

%N Sum of divisors of 5*n-2 of form 5*k+2.

%F a(n) = A284280(5*n-2).

%F G.f.: Sum_{k>0} (5*k-3) * x^(4*k-2) / (1 - x^(5*k-3)).

%t a[n_] := DivisorSum[5*n - 2, # &, Mod[#, 5] == 2 &]; Array[a, 100] (* _Amiram Eldar_, Jul 06 2023 *)

%o (PARI) a(n) = sumdiv(5*n-2, d, (d%5==2)*d);

%Y Cf. A362952, A363026, A363027.

%Y Cf. A284280, A359269, A363029.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Jul 06 2023