%I #18 Nov 11 2023 05:20:27
%S 1,1,3,11,60,384,3062,27838,293416,3447768,45277392,651587760,
%T 10254900048,174557518992,3203361670896,62938642659504,
%U 1319693558377728,29390794198726656,693223221342879360,17256288944072200320,452215395177034040064
%N Expansion of e.g.f. 1/( 1 - (1 + x) * log(1 + x) ).
%F a(n) = Sum_{k=0..n} Stirling1(n,k) * A006153(k).
%F a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / ((1 + LambertW(1)) * exp(n) * (1/LambertW(1) - 1)^(n+1)). - _Vaclav Kotesovec_, Nov 11 2023
%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(1+x)*log(1+x))))
%Y Cf. A305306, A362912.
%Y Cf. A005727, A006153, A305307.
%K nonn
%O 0,3
%A _Seiichi Manyama_, May 10 2023