login
A362877
Theta series of 17-dimensional lattice Kappa_17.
6
1, 0, 4266, 81792, 737862, 3809280, 15406210, 47505792, 133390290, 312588288, 711232812, 1408787328, 2789963820, 4931371008, 8870944884, 14417119872, 24144502662, 36878456832, 58393537998, 84926534016
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(48) with Kronecker character 12 in modulus 48, weight 17/2, and dimension 66 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
EXAMPLE
G.f. = 1 + 4266*q^4 + 81792*q^6 + ...
PROG
(Magma)
prec := 10;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, -1, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 1, -1, 1, 0, 1, -1, 4]);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 2*prec);
[Coefficients(T)[2*i-1] : i in [1..prec]];
KEYWORD
nonn
AUTHOR
Andy Huchala, May 07 2023
STATUS
approved