login
A362800
E.g.f. satisfies A(x) = exp( (exp(x) - 1) * A(x)^(x^2) ).
3
1, 1, 2, 5, 39, 292, 2063, 21877, 271372, 3298155, 47855035, 805112970, 13843621861, 261388560253, 5529798475178, 122059754102345, 2863956966387107, 73150334575839340, 1961833778207602123, 55184622355007805281, 1656027290812446938492
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x^2 * (exp(x) - 1)) / x^2 ).
E.g.f.: Sum_{k>=0} (k*x^2 + 1)^(k-1) * (exp(x) - 1)^k / k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x^2*(exp(x)-1))/x^2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 04 2023
STATUS
approved