Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 03 2023 21:36:40
%S 1,1,1,0,1,1,0,0,2,1,0,0,1,3,1,0,0,0,5,5,1,0,0,0,6,23,7,1,0,0,0,5,116,
%T 89,11,1,0,0,0,3,521,2494,484,15,1,0,0,0,1,1931,69366,87984,2904,22,1,
%U 0,0,0,0,5906,1592714,15456557,4250015,22002,30,1
%N Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-sets of permutations of an n-set.
%C Isomorphism is up to permutation of the elements of the n-set. Each permutation can be considered to be a set of disjoint directed cycles whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the permutations in the k-set.
%H Andrew Howroyd, <a href="/A362763/b362763.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals).
%F T(n,k) = 0 for k > n!.
%F T(n,k) = T(n, n!-k).
%e Array begins:
%e ====================================================================
%e n/k| 0 1 2 3 4 5 6 ...
%e ---+----------------------------------------------------------------
%e 0 | 1 1 0 0 0 0 0 ...
%e 1 | 1 1 0 0 0 0 0 ...
%e 2 | 1 2 1 0 0 0 0 ...
%e 3 | 1 3 5 6 5 3 1 ...
%e 4 | 1 5 23 116 521 1931 5906 ...
%e 5 | 1 7 89 2494 69366 1592714 30461471 ...
%e 6 | 1 11 484 87984 15456557 2209040882 263190866673 ...
%e 7 | 1 15 2904 4250015 5329123475 5366409944453 4503264576070573 ...
%e ...
%o (PARI)
%o B(n,k) = {n!*k^n}
%o K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
%o R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o T(n,k) = {if(n==0, k<=1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*(x^m-x^(2*m))/m, O(x*x^k))), k)); s/n!)}
%Y Columns k=0..3 are A000012, A000041, A362764, A362765.
%Y Row sums are A362766.
%Y Cf. A362644.
%K nonn,tabl
%O 0,9
%A _Andrew Howroyd_, May 03 2023