login
A362750
Number of total dominating sets in the n-double cone graph.
2
4, 16, 79, 336, 1144, 4351, 17224, 67936, 267919, 1063216, 4233904, 16882191, 67380304, 269142736, 1075602319, 4299846976, 17192621224, 68752838911, 274965310744, 1099740514416, 4398645585679, 17593754283616, 70372850295904, 281485727082511, 1125928050595744
OFFSET
1,1
COMMENTS
The n-double cone graph is defined for n >= 3. The sequence has been extended to n=1 using the formula/recurrence. - Andrew Howroyd, May 03 2023
LINKS
Eric Weisstein's World of Mathematics, Double Cone Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Index entries for linear recurrences with constant coefficients, signature (7,-15,18,-24,-6,27,-15,13,-4).
FORMULA
From Andrew Howroyd, May 03 2023: (Start)
a(n) = A001638(n)^2 + 4^n - 1.
a(n) = (A000032(n) + 2*A056594(n))^2 + 4^n - 1.
a(2*n-1) = A302603(4*n-1).
a(n) = 7*a(n-1) - 15*a(n-2) + 18*a(n-3) - 24*a(n-4) - 6*a(n-5) + 27*a(n-6) - 15*a(n-7) + 13*a(n-8) - 4*a(n-9) for n > 9.
G.f.: x*(4 - 12*x + 27*x^2 - 49*x^3 - 215*x^4 + 369*x^5 - 237*x^6 + 207*x^7 - 64*x^8)/((1 - x)*(1 + x)*(1 - 4*x)*(1 - 3*x + x^2)*(1 + 3*x^2 + x^4)).
(End)
MATHEMATICA
Table[1 + 4 (-1)^n + 4^n + LucasL[2 n] + 4 LucasL[n] Cos[n Pi/2], {n, 20}] (* Eric W. Weisstein, Sep 09 2023 *)
Table[(2 Cos[n Pi/2] + Fibonacci[n + 1] + Fibonacci[n - 1])^2 + 4^n - 1, {n, 20}] (* Eric W. Weisstein, Sep 09 2023 *)
LinearRecurrence[{7, -15, 18, -24, -6, 27, -15, 13, -4}, {4, 16, 79, 336, 1144, 4351, 17224, 67936, 267919}, 20] (* Eric W. Weisstein, Sep 09 2023 *)
CoefficientList[Series[4/(1 - 4 x) + 1/(1 - x) - 4/(1 + x) + (3 - 2 x)/(1 + (-3 + x) x) - 4 x (3 + 2 x^2)/(1 + 3 x^2 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 09 2023 *)
PROG
(PARI) a(n) = {(fibonacci(n+1) + fibonacci(n-1) + I^n + (-I)^n)^2 + 4^n - 1} \\ Andrew Howroyd, May 03 2023
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, May 02 2023
EXTENSIONS
a(1)-a(2) prepended and a(16) and beyond from Andrew Howroyd, May 03 2023
STATUS
approved