Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Apr 13 2024 09:15:55
%S 1,1,3,13,63,324,1736,9589,54223,312369,1826847,10818156,64737684,
%T 390877456,2378312780,14568360645,89766137967,556008951667,
%U 3459976045201,21621154097573,135619427912599,853590782088272,5389272616262656,34123058549079788,216621704634708868
%N Number of parking functions of size n avoiding the patterns 312 and 321.
%H Alois P. Heinz, <a href="/A362744/b362744.txt">Table of n, a(n) for n = 0..1211</a>
%H Ayomikun Adeniran and Lara Pudwell, <a href="https://doi.org/10.54550/ECA2023V3S3R17">Pattern avoidance in parking functions</a>, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
%H Jun Yan, <a href="http://arxiv.org/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 3.4.
%F Consider a Dyck path of semilength n to be a path from (0,0) to (n,n) consisting of N=(0,1) steps and E=(1,0) steps, staying weakly above y=x and let D(n) be the set of all such paths.
%F For any Dyck path d, let w(d) be the word of positive integers that records the lengths of the maximal consecutive strings of N-steps in d, let w(d)_i be the i-th entry of w(d), and let |w(d)| be the length of d.
%F a(n) = Sum_{d in D(n)} Product_{i=1..|w(d)|-1} (w(d)_i+1).
%F a(n) ~ 23 * 3^(3*n + 3/2) / (25 * sqrt(Pi) * 2^(2*n + 3) * n^(3/2)). - _Vaclav Kotesovec_, May 02 2023
%F From _Jun Yan_, Apr 13 2024: (Start)
%F a(n) = binomial(3*n + 1, n)/(n + 1) - Sum_{k=0..n-1} binomial(3*n - 3*k + 1, n - k) / (2^(k + 1)*(n - k + 1)).
%F G.f.: ((1 - x)*A(x) + 1)/(2 - x), where A(x) is the g.f. of A006013. (End)
%e The a(3) = 13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}.
%e When n = 3 there are 5 Dyck paths:
%e w(NNNEEE) = [3], contributing 1 to the sum;
%e w(NNENEE) = [2,1], contributing 2+1 = 3 to the sum;
%e w(NNEENE) = [2,1], contributing 2+1 = 3 to the sum;
%e w(NENNEE) = [1,2], contributing 1+1 = 2 to the sum;
%e w(NENENE) = [1,1,1], contributing (1+1)(1+1) = 4 to the sum.
%e Therefore, a(3) = 1+3+3+2+4 = 13.
%p b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
%p `if`(x=y, 1, b(x-1, y-1, 0)*(t+1)+b(x-1, y+1, t+1)))
%p end:
%p a:= n-> b(2*n, 0$2):
%p seq(a(n), n=0..24); # _Alois P. Heinz_, May 02 2023
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n<2, 1, (2*(667*n^4-1439*n^3+656*n^2
%p +146*n-96)*a(n-1)-3*(3*n-4)*(3*n-2)*(23*n^2-6*n-5)*a(n-2))/
%p (4*(2*n+1)*(n+1)*(23*n^2-52*n+24)))
%p end:
%p seq(a(n), n=0..24); # _Alois P. Heinz_, May 02 2023
%Y Cf. A000108, A006013, A362595, A362596, A362597, A362741.
%K nonn
%O 0,3
%A _Lara Pudwell_, May 01 2023
%E a(13)-a(24) from _Alois P. Heinz_, May 02 2023