|
|
A362735
|
|
E.g.f. satisfies A(x) = exp(x + x / A(x)^2).
|
|
4
|
|
|
1, 2, -4, 56, -1008, 25632, -833600, 33067904, -1548418816, 83597525504, -5112566055936, 349330707068928, -26374805535322112, 2180554321981349888, -195926186031705505792, 19010400989418574020608, -1980997069982960384409600, 220651645970702249702326272
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: sqrt( 2*x / LambertW(2*x*exp(-2*x)) ) = exp( x + LambertW(2*x*exp(-2*x))/2 ).
a(n) = Sum_{k=0..n} (-2*k+1)^(n-1) * binomial(n,k) = 2^n * A349720(n).
|
|
PROG
|
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(2*x*exp(-2*x))/2)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|