login
a(n) is the permanent of the n X n symmetric matrix M(n) defined by M[i, j, n] = min(i, j)*(n + 1) - i*j.
3

%I #37 May 25 2023 07:12:04

%S 1,1,5,72,2309,140400,14495641,2347782144,562385930985,

%T 190398813728000,87889475202276461,53726132414026874880,

%U 42454821207656237294381,42495322215073539046387712,52954624815227996007075890625,80932107560443542398970529579008,149736953621087625813286348913927569

%N a(n) is the permanent of the n X n symmetric matrix M(n) defined by M[i, j, n] = min(i, j)*(n + 1) - i*j.

%C M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n.

%C The elements sum of the matrix M(n) is A002415(n+1).

%C The antidiagonal sum of the matrix M(n) is A005993(n-1).

%C The n-th row of A107985 gives the row or column sums of the matrix M(n+1).

%D E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.

%H Chao Ju, <a href="https://arxiv.org/abs/2304.11830">Chern-Simons Theory, Ehrhart Polynomials, and Representation Theory</a>, arXiv:2304.11830 [math-ph], 2023. See p. 14.

%H Stefano Spezia, <a href="/A362679/a362679.pdf">A determinantal formula for the number of trees on n labeled nodes</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Special_unitary_group">Special unitary group</a>

%F Conjecture: det(M(n)) = A000272(n+1).

%F The conjecture is true (see proof in Links). - _Stefano Spezia_, May 24 2023

%e a(3) = 72:

%e [3, 2, 1]

%e M(3) = [2, 4, 2]

%e [1, 2, 3]

%e a(5) = 140400:

%e [5, 4, 3, 2, 1]

%e [4, 8, 6, 4, 2]

%e M(5) = [3, 6, 9, 6, 3]

%e [2, 4, 6, 8, 4]

%e [1, 2, 3, 4, 5]

%p a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](

%p Matrix(n, (i, j)-> min(i, j)*(n+1)-i*j))):

%p seq(a(n), n=0..16); # _Alois P. Heinz_, Apr 30 2023

%t M[i_, j_, n_]:=Min[i, j](n+1)-i j; Join[{1}, Table[Permanent[Table[M[i, j, n], {i, n}, {j, n}]], {n, 17}]]

%o (PARI) a(n) = matpermanent(matrix(n, n, i, j, min(i, j)*(n + 1) - i*j)); \\ _Michel Marcus_, Apr 30 2023

%Y Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985.

%K nonn

%O 0,3

%A _Stefano Spezia_, Apr 29 2023