login
A362673
E.g.f. satisfies A(x) = exp( x * exp(x^2) / A(x) ).
3
1, 1, -1, 10, -51, 556, -7085, 116376, -2263303, 51072400, -1308626649, 37526799520, -1190440709051, 41385630158016, -1564585725985477, 63903022429837696, -2804097015221308815, 131558782973452677376, -6571623885587502740657
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( LambertW(x * exp(x^2)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * (-n+2*k+1)^(n-2*k-1) / (k! * (n-2*k)!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x*exp(x^2)))))
CROSSREFS
Cf. A362674.
Sequence in context: A224327 A219573 A135242 * A041186 A058827 A232909
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 29 2023
STATUS
approved