login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362673
E.g.f. satisfies A(x) = exp( x * exp(x^2) / A(x) ).
3
1, 1, -1, 10, -51, 556, -7085, 116376, -2263303, 51072400, -1308626649, 37526799520, -1190440709051, 41385630158016, -1564585725985477, 63903022429837696, -2804097015221308815, 131558782973452677376, -6571623885587502740657
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( LambertW(x * exp(x^2)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * (-n+2*k+1)^(n-2*k-1) / (k! * (n-2*k)!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x*exp(x^2)))))
CROSSREFS
Cf. A362674.
Sequence in context: A224327 A219573 A135242 * A041186 A058827 A232909
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 29 2023
STATUS
approved