OFFSET
1,27
COMMENTS
In other words, a(n)/(Product_{i=1..m} k_i) is the minimum difference of the largest and smallest probabilities of the orderings of the dice.
a(n) = 0, with n = Product_{i=1..m} prime(k_i), means that there exists a set of m dice with k_1, ..., k_m faces, such that all m! orderings are equally likely, i.e., a permutation-fair set of dice. A necessary condition for a(n) = 0 to hold is that Product_{i=1..m} k_i be divisible by m!. This condition is not sufficient; for n = 45 = prime(2)^2*prime(3), for example, 2*2*3 is divisible by 3! but a(n) = 2 (see example).
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..1000
James Grime and Brady Haran, Go First Dice, Numberphile video, 2023.
Eric Harshbarger, Go First Dice.
Wikipedia, Go First Dice.
FORMULA
a(2^k) = 1 for k >= 2 (corresponding to a set of k 1-sided "dice").
a(p) = 0 if p is prime (corresponding to a single die).
EXAMPLE
For two 2-sided dice and one 3-sided die, the best we can do is to number the faces (2,6), (3,5), and (1,4,7), respectively. We then have the following 12 possible outcomes and orderings:
d1 d2 d3 | ordering
---------+---------
2 3 1 | d3<d1<d2
2 3 4 | d1<d2<d3
2 3 7 | d1<d2<d3
2 5 1 | d3<d1<d2
2 5 4 | d1<d3<d2
2 5 7 | d1<d2<d3
6 3 1 | d3<d2<d1
6 3 4 | d2<d3<d1
6 3 7 | d2<d1<d3
6 5 1 | d3<d2<d1
6 5 4 | d3<d2<d1
6 5 7 | d2<d1<d3
The maximum frequency for an ordering is 3 (for d1<d2<d3 and d3<d2<d1) and the minimum frequency is 1 (for d1<d3<d2 and d2<d3<d1), so a(prime(2)^2*prime(3)) = a(45) = 3-1 = 2. (This is the unique way of numbering the faces so that the difference of the maximum and minimum frequencies is 2.)
There exists a permutation-fair set of three dice with 2, 4, and 6 faces, so a(prime(2)*prime(4)*prime(6)) = a(3*7*13) = a(273) = 0. (See Harshbarger link.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Pontus von Brömssen, Apr 29 2023
STATUS
approved