login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n, k) = A094088(n) * binomial(n, k).
4

%I #13 Apr 24 2024 11:40:17

%S 1,1,1,7,14,7,121,363,363,121,3907,15628,23442,15628,3907,202741,

%T 1013705,2027410,2027410,1013705,202741,15430207,92581242,231453105,

%U 308604140,231453105,92581242,15430207,1619195761,11334370327,34003110981,56671851635,56671851635,34003110981,11334370327,1619195761

%N Triangle read by rows, T(n, k) = A094088(n) * binomial(n, k).

%e [0] 1;

%e [1] 1, 1;

%e [2] 7, 14, 7;

%e [3] 121, 363, 363, 121;

%e [4] 3907, 15628, 23442, 15628, 3907;

%e [5] 202741, 1013705, 2027410, 2027410, 1013705, 202741;

%o (SageMath) # uses[TransOrdPart from A362585]

%o def A362586(n) -> list[int]: return TransOrdPart(2, n)

%o for n in range(6): print(A362586(n))

%Y Family of triangles: A055372 (m=0, Pascal), A362585 (m=1, Fubini), this sequence (m=2, Joffe), A362849 (m=3, A278073).

%Y Cf. A094088 (column 0 and main diagonal), A362587 (row sums).

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Apr 26 2023