Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Mar 02 2024 14:48:10
%S 5,21,101,502,2502,12502,62503,312503,1562503,7812504,39062504,
%T 195312504,976562505,4882812505,24414062505,122070312506,610351562506,
%U 3051757812506,15258789062507,76293945312507,381469726562507
%N Number of distinct n-digit suffixes generated by iteratively multiplying an integer by 8, where the initial integer is 1.
%H Paolo Xausa, <a href="/A362556/b362556.txt">Table of n, a(n) for n = 1..1000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiplicative_order">Multiplicative order</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5,1,-6,5).
%e For n = 1, we begin with 1, iteratively multiply by 8 and count the number of terms before the last 1 digit begins to repeat. We obtain 1, 8, 64, 512, 4096, ... . The next term is 32768, which repeats the last 1 digit 8. Thus, the number of distinct terms is a(1) = 5.
%t A362556[n_]:=5^(n-1)4+Ceiling[n/3];Array[A362556,30] (* after _Charles R Greathouse IV_ *) (* or *) LinearRecurrence[{6,-5,1,-6,5},{5,21,101,502,2502},30] (* _Paolo Xausa_, Nov 18 2023 *)
%o (Python)
%o def a(n):
%o s, x, M = set(), 1, 10**n
%o while x not in s: s.add(x); x = (x<<3)%M
%o return len(s)
%o (PARI) a(n)=4*5^(n-1)+ceil(n/3) \\ _Charles R Greathouse IV_, Apr 28 2023
%Y Cf. A001018, A005054.
%Y Cf. A014391, A014392.
%Y Cf. A362468 (with 4 as the multiplier).
%K nonn,base,easy
%O 1,1
%A _Gil Moses_, Apr 24 2023
%E a(13)-a(21) from _Charles R Greathouse IV_, Apr 28 2023