login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (3*j+1)^(n-2*j-1) / (j! * (n-3*j)!).
6

%I #19 Oct 02 2023 13:14:43

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,17,1,1,1,1,4,33,161,1,1,1,1,5,

%T 49,321,1351,1,1,1,1,6,65,481,2841,12391,1,1,1,1,7,81,641,4471,31641,

%U 153385,1,1,1,1,8,97,801,6241,57751,498849,2388905,1

%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (3*j+1)^(n-2*j-1) / (j! * (n-3*j)!).

%H Winston de Greef, <a href="/A362490/b362490.txt">Table of n, a(n) for n = 0..11324</a> (150 antidiagonals)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^3/6 * A_k(x)^3).

%F A_k(x) = exp(x - LambertW(-k*x^3/2 * exp(3*x))/3).

%F A_k(x) = ( -2 * LambertW(-k*x^3/2 * exp(3*x))/(k*x^3) )^(1/3) for k > 0.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 3, 4, 5, 6, 7, ...

%e 1, 17, 33, 49, 65, 81, 97, ...

%e 1, 161, 321, 481, 641, 801, 961, ...

%e 1, 1351, 2841, 4471, 6241, 8151, 10201, ...

%o (PARI) T(n, k) = n! * sum(j=0, n\3, (k/6)^j*(3*j+1)^(n-2*j-1)/(j!*(n-3*j)!));

%Y Columns k=0..3 give A000012, A362477, A362478, A362479.

%Y Cf. A362378.

%K nonn,tabl

%O 0,14

%A _Seiichi Manyama_, Apr 22 2023